Prediction of saponin content in soapnut (Sapindus mukorossi Gaertn.) fruits by near infrared spectroscopy

Author:

Li Yanjie12ORCID,Shao Wenhao1,Dong Ruxiang1,Jiang Jingmin1,Diao Songfeng13

Affiliation:

1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang County, Zhejiang Province, China

2. School of Forestry, University of Canterbury, Christchurch, New Zealand

3. China Paulownia Research Centre, Non-timber Forest Research and Development Centre of Chinese Academy of Forestry, Zhengzhou city, Henan Province, China

Abstract

In this study, near infrared spectroscopy has been demonstrated to quickly determine the saponin content in soapnut fruits. Partial least squares analysis combined with pre-processing methods and significance multivariate correlation variable selection was introduced to develop a statistical model calibrated for saponin content in soapnut fruits. The results showed that the first derivative yielded the best partial least squares calibration models with spectra of both the surface of dried fruits and the powder of dry seeded fruits with root mean square error of calibration values of 0.85% and 0.59%, respectively. The surface model presented less accuracy than the powder model. However, when the significance multivariate correlation variable selection method was applied to select the best variables from the spectra, the partial least squares models using spectra of surface and powder samples became similar, with higher R2 values (0.84 and 0.90), lower root mean square error of calibration values of 0.23% and 0.39%. It was suggested that near infrared spectroscopy could be a promising and rapid method for predicting the saponin content in the soapnut fruits without grinding them into powder.

Funder

Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3