Computer-aided design to support fabrication of wrist splints using 3D printing: A feasibility study

Author:

Paterson Abby M1,Donnison Ella2,Bibb Richard J1,Ian Campbell R1

Affiliation:

1. Loughborough Design School, Loughborough University, Loughborough, UK

2. Pulvertaft Hand Unit, Royal Derby Hospital, Derby, UK

Abstract

Introduction Issues contributing to poor patient compliance for splint wear include poor aesthetics, fit and performance. This paper describes a novel digitised splinting process using 3D printing in an attempt to overcome these issues. The output of the investigation was the creation of a specialised computer-aided design software workflow to support 3D printing, developed specifically for splinting practitioners in the UK, to enable them to design splints themselves for each individual patient. Method A small-scale feasibility study was done, based on the current splinting process. A thorough literature review and physical engagement in current splinting practice was performed, highlighting key requirements for successful splint fabrication. Key requirements were then replicated in a virtual software environment. Opportunities for integrating new, novel features were explored. The key requirements were then refined into a specialised software workflow to replicate the splinting process. The specialised software was then evaluated by 10 practitioners. User trials of the software were performed, followed by semi-structured interviews. Audio recordings were transcribed and then coded to establish similar trends of opinions, and areas for future research. No patients or vulnerable participants were involved in the study. Results All participants were able to use and navigate around the software prototype with relative ease. Strengths included potential simplicity in modelling more complex splints, but several areas for future research are identified, including cost analysis and materials development. Discussion The digitised splinting process shows promise for the benefit of both practitioners and their patients, provided that future research and investment can overcome current limitations.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3