Affiliation:
1. Department of Chemistry, College of Natural Sciences, Keimyung University, Daegu, Republic of Korea
Abstract
The serum- and glucocorticoid-regulated kinase (SGK) family consists of three isoforms (SGK1, SGK2, and SGK3) that have been implicated in the regulation of tumor growth, metastasis, autophagy, and epithelial ion transport. SGK1 and SGK3 play essential roles in protein kinase B (AKT or PKB)-independent phosphoinositide 3-kinases (PI3K)-mediated tumorigenesis, as evidenced by the significantly elevated expression levels of SGK1 and SGK3 in many cancers, including prostate cancer, colorectal carcinoma, estrogen-dependent breast cancer, and glioblastoma. Therefore, SGK is a potential target for anticancer therapy. A small kinase-focused library comprising 160 compounds was screened against SGK1 using a fluorescence polarization–based kinase assay that yielded a Z’-factor of 0.82. Among the 39 compounds obtained as initial hits in a primary screen, 12 compounds contained the thiazolidine-2,4-dione scaffold. The inhibitory mechanisms of the most potent hit, KMU010402, were further investigated using kinetic analyses, followed by determination of the inhibition constants for SGK1, SGK2, and SGK3. Molecular modeling was used to propose a potential binding mode of KMU010402 to SGK1.
Subject
Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology