High-Throughput Screening for Protein Synthesis Inhibitors Targeting Aminoacyl-tRNA Synthetases

Author:

Kong Jiwon1,Fang Pengfei23,Madoux Franck45,Spicer Timothy P.4,Scampavia Louis4,Kim Sunghoon16,Guo Min2

Affiliation:

1. Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea

2. Department of Cancer Biology, Scripps Research Institute, Scripps Florida, Jupiter, FL, USA

3. State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China

4. Department of Molecular Medicine, Scripps Research Institute, Scripps Florida, Jupiter, FL, USA

5. Discovery Technologies, Amgen, Thousand Oaks, CA, USA

6. Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea

Abstract

Aminoacylation has been implicated in a wide variety of cancers. Aminoacyl-tRNA synthetases (ARSs) exist in large excess in tumor cells due to their increased demand for translation, whereas most other protein-synthesis apparatuses are quantitatively limited. Among other components that constitute the translation machinery—namely, tRNA, amino acid, ATP, and ARS—ARS is the only target that can be blocked by small molecules. No constitutively active ARSs have been reported, and mutations of ARS can cause inaccurate substrate recognition and malformation of the multi-ARS complex (MSC). Hence, interference of the activity is expected to be independent of genotype without developing resistance. Here, we report a high-throughput screening (HTS) system to find mammalian ARS inhibitors. The rabbit–reticulocyte lysate we used closely resembles both the individual and complexed structures of human ARSs, and it may predispose active compounds that are readily applicable for humankind. This assay was further validated because it identified familiar translational inhibitors from a pilot screen, such as emetine, proving its suitability for our purpose. The assay demonstrated excellent quality control (QC) parameters and reproducibility, and is proven ready for further HTS campaigns with large chemical libraries.

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3