Evaluation of Compound Optical Interference in High-Content Screening

Author:

Ibáñez Glorymar12,Calder Paul A.12,Radu Constantin3,Bhinder Bhavneet24,Shum David23,Antczak Christophe25,Djaballah Hakim26

Affiliation:

1. Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA

2. HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA

3. Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, Republic of Korea

4. Weill Cornell Medicine, New York, NY, USA

5. Novartis Institutes for Biomedical Research, Cambridge, MA, USA

6. Keren Therapeutics, Scarsdale, NY, USA

Abstract

Compound optical interference remains an inherent problem in chemical screening and has been well documented for biochemical assays and less so for automated microscopy-based assays. It has also been the assumption that the latter should not suffer from such interference because of the washing steps involved in the process, thus eliminating the residual nonspecific compound effects. Instead, these compounds may have no relevance to the actual target, and as such, compound optical interference contributes to a number of false-positives, resulting in a high attrition rate during subsequent follow-up studies. In this report, we analyze the outcome of a high-content screen using enhanced green fluorescent protein as a reporter in a gain-of-function cell-based assay in search of modulators of the micro RNA (miRNA) biogenesis pathway. Using a previously validated image-based biosensor, we screened a diverse library collection of ~315,000 compounds covering natural and synthetic derivatives in which 1130 positives were identified to enhance green fluorescence expression. Lateral confirmation and dose-response studies revealed that all of these compounds were the result of optical interference and not specific inhibition of miRNA biogenesis. Here, we highlight the chemical classes that are susceptible to compound optical interference and discuss their implications in automated microscopy-based assays.

Funder

National Cancer Institute

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3