A Cell-Based Renilla Luminescence Reporter Plasmid Assay for High-Throughput Screening to Identify Novel FDA-Approved Drug Inhibitors of HPV-16 Infection

Author:

Walhart Tara12ORCID,Isaacson-Wechsler Erin2,Ang Kean-Hooi3,Arkin Michelle3,Tugizov Sharof2,Palefsky Joel M.2

Affiliation:

1. Department of Community Health Systems, School of Nursing, University of California, San Francisco, CA, USA

2. Department of Infectious Disease, Palefsky Laboratory, School of Medicine, University of California, San Francisco, CA, USA

3. Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA, USA

Abstract

Like cervical cancer, anal cancer is caused by human papillomavirus (HPV). HPV is the most common sexually transmitted agent and is found in the anal canal of almost all HIV-positive men who have sex with men (MSM). Rates of HPV anal cancer are disproportionately higher in this population. Although the nanovalent HPV vaccine is efficacious in protecting against oncogenic HPV types, a substantial proportion of MSM remains unvaccinated and anal HPV infection continues to be an important public health burden. Therefore, it is important to identify strategies to prevent HPV infection. We report on two promising and interlinked strategies: (1) the development of a cell-based Renilla luminescence reporter assay using HPV-16 pseudovirions that encapsidate SV40-driven Renilla luminescence reporter expression plasmid and (2) use of this assay for high-throughput screening (HTS) of FDA- and internationally approved drugs to identify those that could be repurposed to prevent HPV infection. We conducted a screen of 1906 drugs. The assay was valid with a Z′ of 0.67 ± 0.04, percent coefficient of variance of 10.0, and signal-to-background noise window of 424.0 ± 8.0. Five drugs were chosen for further analyses based on selection parameters of ≥77.0% infection of HPV-16 pseudovirion-driven Renilla expression with <20.0% cytotoxicity. Of these, the antifungal pentamidine and a gamma-amino butyric acid receptor agonist securinine exhibited ≥90.0% infection with <10.0% cytotoxicity. This luminescent cell-based reporter expression plasmid assay for HTS is a valid method to identify FDA- and internationally approved drugs with the potential to be repurposed into prevention modalities for HPV infection.

Funder

national institutes of health

american cancer society

national cancer institute

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3