Temperature-Dependent Expression of a CFP-YFP FRET Diacylglycerol Sensor Enables Multiple-Read Screening for Compounds That Affect C1 Domains

Author:

Yang Xiuyi Alexander1,Zweifach Adam1

Affiliation:

1. Department of Molecular and Cell Biology, University of Connecticut at Storrs, Storrs, CT, USA

Abstract

Intramolecular CFP-YFP fluorescence resonance energy transfer (FRET) sensors expressed in cells are powerful research tools but have seen relatively little use in screening. We exploited the discovery that the expression of a CFP-YFP FRET diacylglycerol sensor (DAGR) increases over time when cells are incubated at room temperature to assess requirements for robust measurements using a Molecular Devices Spectramax i3x fluorescence plate reader. Expression levels resulting in YFP fluorescence >10-fold higher than untransfected cells and phorbol ester-stimulated FRET ratio changes of 60% or more were required to consistently give robust Z′ > 0.5. As a means of confirming that these conditions are suitable for screening, we developed a novel multiple-read protocol to assay the NCI’s Mechanistic Set III for agonists and antagonists of C1 domain activation. Sixteen compounds prevented C1 domain translocation. However, none blocked phorbol ester-stimulated protein kinase C (PKC) activity assessed using a phospho-specific antibody—six actually stimulated PKC activity. Cytometry, which produces higher Z′ for a given FRET ratio change, might have been a better approach for discovering antagonists, as it would have allowed lower phorbol ester concentrations to be used. We conclude that CFP-YFP FRET measured in a Spectramax i3x plate reader can be used for screening under the conditions we defined. Our strategy of varying expression level and FRET ratio could be useful to others for determining conditions needed for robust cell-based intramolecular CFP-YFP FRET measurements on their instrumentation.

Funder

national institutes of health

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biosensor-Based Directed Evolution of Methanol Dehydrogenase from Lysinibacillus xylanilyticus;International Journal of Molecular Sciences;2021-02-02

2. Z’ Does Not Need to Be > 0.5;SLAS DISCOVERY: Advancing the Science of Drug Discovery;2020-08-04

3. The National Cancer Institute’s Plated Compound Sets Can Be a Valuable Resource for Academic Researchers;SLAS DISCOVERY: Advancing the Science of Drug Discovery;2019-09-06

4. C1 Compound Biosensors: Design, Functional Study, and Applications;International Journal of Molecular Sciences;2019-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3