MALDI-TOF Mass Spectrometry-Based High-Throughput Screening for Inhibitors of the Cytosolic DNA Sensor cGAS

Author:

Simon Roman P.1,Winter Martin1,Kleiner Carola1,Ries Robert1,Schnapp Gisela2,Heimann Annekatrin2,Li Jun3,Zuvela-Jelaska Ljiljana3,Bretschneider Tom1ORCID,Luippold Andreas H.1,Reindl Wolfgang1,Bischoff Daniel1,Büttner Frank H.1

Affiliation:

1. Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany

2. Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany

3. Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA

Abstract

Comprehensive and unbiased detection methods are a prerequisite for high-throughput screening (HTS) campaigns within drug discovery research. Label-free matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been introduced as an HTS-compatible readout for biochemical test systems to support the drug discovery process. So far, reported HTS applications were based on surface-modified systems or proof-of-concept studies. We present the utilization of a MALDI-TOF-based screening platform to identify inhibitors of human cyclic GMP-AMP synthase (cGAS), a mediator of innate immune response whose aberration has been causally correlated to a number of inflammatory disorders. In this context, the development and validation of a MALDI-TOF-based activity assay is reported to demonstrate fast, robust, and accurate detection of chemical cGAS inhibition by direct quantification of the physiological reaction product cyclic GMP-ATP (cGAMP). Results from a screen of a diverse library of more than 1 million small molecules in 1536-well format against the catalytic cGAS activity are presented with excellent assay performance and data quality. Identified hits were qualified in dose–response experiments and confirmed by RapidFire-MS measurements. Conclusively, the presented data provide the first proof of applicability of direct automated MALDI-TOF MS as a readout strategy for large-scale drug discovery HTS campaigns.

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3