A Chemogenomic Screening Platform Used to Identify Chemotypes Perturbing HSP90 Pathways

Author:

Thomas Fiona M.1,Goode Kourtney M.1,Rajwa Bartek2,Bieberich Andrew A.1,Avramova Larisa V.2,Hazbun Tony R.13,Davisson V. Jo13

Affiliation:

1. Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA

2. Bindley Bioscience Center, Purdue Discovery Park, Purdue University, West Lafayette, IN, USA

3. Purdue University Center for Cancer Research, West Lafayette, IN, USA

Abstract

Compounds that modulate the heat shock protein (HSP) network have potential in a broad range of research applications and diseases. A yeast-based liquid culture assay that measured time-dependent turbidity enabled the high-throughput screening of different Saccharomyces cerevisae strains to identify HSP modulators with unique molecular mechanisms. A focused set of four strains, with differing sensitivities to Hsp90 inhibitors, was used to screen a compound library of 3680 compounds. Computed turbidity curve functions were used to classify strain responses and sensitivity to chemical effects across the compound library. Filtering based on single-strain selectivity identified nine compounds as potential heat shock modulators, including the known Hsp90 inhibitor macbecin. Haploid yeast deletion strains (360), mined from previous Hsp90 inhibitor yeast screens and heat shock protein interaction data, were screened for differential sensitivities to known N-terminal ATP site-directed Hsp90 inhibitors to reveal functional distinctions. Strains demonstrating differential sensitivity (13) to Hsp90 inhibitors were used to prioritize primary screen hit compounds, with NSC145366 emerging as the lead hit. Our follow-up biochemical and functional studies show that NSC145366 directly interacts and inhibits the C-terminus of Hsp90, validating the platform as a powerful approach for early-stage identification of bioactive modulators of heat shock–dependent pathways.

Funder

Pharmaceutical Research and Manufacturers of America Foundation

National Institutes of Health

National Cancer Institute

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical Screening of Nuclear Receptor Modulators;International Journal of Molecular Sciences;2020-07-31

2. Medium-Throughput Detection of Hsp90/Cdc37 Protein–Protein Interaction Inhibitors Using a Split Renilla Luciferase-Based Assay;SLAS DISCOVERY: Advancing the Science of Drug Discovery;2019-10-29

3. Screening of Chemical Libraries Using a Yeast Model of Retinal Disease;SLAS DISCOVERY: Advancing the Science of Drug Discovery;2019-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3