Bioelectronic Measurement of Target Engagement to a Membrane-Bound Transporter

Author:

Martinez William E.12,Arenas Jaime E.1,Mok Leo3,Wong Ngo Yin14,Lozano Monica M.15,Lin Wan-Chen16,Gutierrez M. Gertrude17,Sierra Chavera Rodrigo18,McGivern Joseph G.39

Affiliation:

1. Research and Development, Nanotech Biomachines, Inc., Richmond, CA, USA

2. Avalor Therapeutics, Seattle, WA, USA

3. Discovery Technologies, Amgen Research, South San Francisco, CA, USA

4. Ximedica, LLC, San Francisco, CA, USA

5. Profusa, Inc., Emeryville, CA, USA

6. Imgenix Corp., Paoli, PA, USA

7. Pharmaceutical Science & Technology, AstraZeneca, South San Francisco, CA, USA

8. Sierra Intelligence, Bahrain

9. Denali Therapeutics, South San Francisco, CA, USA

Abstract

The ability to detect and characterize drug binding to a target protein is of high priority in drug discovery research. However, there are inherent challenges when the target of interest is an integral membrane protein (IMP). Assuming successful purification of the IMP, traditional approaches for measuring binding such as surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) have been proven valuable. However, the mass dependence of SPR signals may preclude the detection of binding events when the ligand has a significantly smaller mass than the target protein. In FRET-based experiments, protein labeling through modification may inadvertently alter protein dynamics. Graphene Bio-Electronic Sensing Technology (GBEST) aims to overcome these challenges. Label-free characterization takes place in a microfluidic chamber wherein a fluid lipid membrane is reconstituted directly above the GBEST sensor surface. By leveraging the high conductivity, sensitivity, and electrical properties of monolayer graphene, minute changes in electrostatic charges arising from the binding and unbinding of a ligand to a native IMP target can be detected in real time and in a mass-independent manner. Using crude membrane fractions prepared from cells overexpressing monocarboxylate transporter 1 (MCT1), we demonstrate the ability to (1) form a fluid lipid bilayer enriched with MCT1 directly on top of the GBEST sensor and (2) obtain kinetic binding data for an anti-MCT1 antibody. Further development of this novel technology will enable characterization of target engagement by both low- and high-molecular-weight drug candidates to native IMP targets in a physiologically relevant membrane environment.

Funder

amgen

Nanotech Biomachines

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3