Assessment of AASHTO Load-Spreading Method for Buried Culverts and Proposed Improvement

Author:

Katona Michael G.1ORCID

Affiliation:

1. Washington State University, Gig Harbor, WA

Abstract

AASHTO’s ad hoc method (AAM) for predicting free-field soil stress under a rectangular loading area is a simple and very useful tool for the analysis of buried culverts subject to vehicular wheel loads. AAM assumes the surface load spreads with soil depth into an ever-increasing rectangular area whose dimensions are controlled by a constant spread angle θ usually taken as 30°, denoted as AAM-30°. Both simplified and comprehensive culvert analysis procedures utilize AAM predictions for adjusting pressure distributions acting on the culvert periphery. Also, AAM-30° is routinely used to determine the two-wheel soil interaction depth, in which the combined effect of both axial wheels need to be considered. To date, a thorough accuracy analysis of AAM-30° has not been published in the open literature. This paper provides a unique and rigorous evaluation of AAM-30° using an exact solution from an elasticity-based model (EBM) of a homogeneous half-space with rectangular surface load. One key discovery is the depth parameter called y*, which is the soil depth at which AAM-30° peak-stress prediction exactly matches the exact EBM solution. Moreover, it is shown that y* may be determined by a simple, yet accurate formula that only depends on the square root of the load area. However, the investigation reveals that AAM-30° significantly underestimates peak stress in the shallow-depth zone 0 <  y < ½ y* by as much as 31.3% of the applied surface pressure. As this is a large nonconservative error it cannot be ignored. Accordingly, a very simple modification is introduced called AAM-θ*, in which θ* is a spread angle that linearly increases to 30° at soil depth ½ y* and thereafter θ* remains constant at 30°. An accuracy evaluation of AAM-θ* reveals an order of magnitude increase in accuracy in which the small residual error is conservative, not nonconservative. The paper concludes with discussions on applying AAM-θ* to the analysis of buried culverts when using either simple or finite element model solution procedures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference4 articles.

1. Proposed Modifications to AASHTO Culvert Load Rating Specifications. NCHRP Project 15-54 Final Report. The National Academies Press, Washington, D.C., 2019.

2. Poulos H. G., Davis E. H. Elastic Solutions for Soil and Rock Mechanics (Holl, Homogenous Half-Space, Rectangular Footprint Solution, p. 54), John Wiley, New York, 1980.

3. Continuous Load Scaling: New Method of Simulating Longitudinal Live Load Spreading for Two-Dimensional Analysis of Buried Culverts

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3