Affiliation:
1. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC
2. Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC
Abstract
Highway agencies need to manage the utilization of their highway equipment assets to reduce fleet management costs, balance equipment use, and provide the required services. Predictive equipment utilization and operational cost models are required for optimal management; however, there are no widely accepted models for this purpose. Although the utilization data is collected by state DOTs, the literature does not show any specific statistical model to predict equipment utilization as a function of contributing factors such as asset age, fleet size, costs, and demand for service. This study will bridge this gap and develop a predictive model to estimate the utilization of fleet equipment. The main objective of this paper is to develop a set of predictive models to estimate the annual utilization of seven non-stationary highway equipment types based on several explanatory variables including their annual fuel cost, downtime hours, age, and weight. Furthermore, another set of models are fit to predict the annual operational cost for these equipment types based on the most important contributing factors. The prediction models are developed after a nationwide data collection. Several years of collected data from seven states are processed and used for model development. This research has identified annual mileage as an appropriate and widely used utilization metric. Various model structures to predict annual mileage are considered. The logarithmic function of annual mileage has provided the most appropriate structure. The final annual mileage predictive models have R-squared values that are between 0.65 and 0.89, which indicates a good fit for all models. The models are validated by performing several statistical tests and they have satisfied all required assumptions of regression analysis. The result of modeling and statistical analysis showed that the proposed models accurately estimated the utilization and operational cost for highway equipment assets.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cost Estimation Method of 220KV Transmission and Transformation Project Based on 3D Information Model;2023 International Conference on Electronics and Devices, Computational Science (ICEDCS);2023-09-22