A Reinforcement Learning Approach for Global Navigation Satellite System Spoofing Attack Detection in Autonomous Vehicles

Author:

Dasgupta Sagar1ORCID,Ghosh Tonmoy2ORCID,Rahman Mizanur1ORCID

Affiliation:

1. Department of Civil, Construction & Environmental Engineering, The University of Alabama, Tuscaloosa, AL

2. Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL

Abstract

A resilient positioning, navigation, and timing (PNT) system is a necessity for the robust navigation of autonomous vehicles (AVs). A global navigation satellite system (GNSS) provides satellite-based PNT services. However, a spoofer can tamper the authentic GNSS signal and could transmit wrong position information to an AV. Therefore, an AV must have the capability of real-time detection of spoofing attacks related to PNT receivers, whereby it will help the end-user (the AV in this case) to navigate safely even if the GNSS is compromised. This paper aims to develop a deep reinforcement learning (RL)-based turn-by-turn spoofing attack detection method using low-cost in-vehicle sensor data. We have utilized the Honda Research Institute Driving Dataset to create attack and non-attack datasets to develop a deep RL model and have evaluated the performance of the deep RL-based attack detection model. We find that the accuracy of the deep RL model ranges from 99.99% to 100%, and the recall value is 100%. Furthermore, the precision ranges from 93.44% to 100%, and the f1 score ranges from 96.61% to 100%. Overall, the analyses reveal that the RL model is effective in turn-by-turn spoofing attack detection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference40 articles.

1. Transportation Cyber-Physical System and its importance for future mobility

2. Brief Introduction to the GPS and BeiDou Satellite Navigation Systems

3. GNSS Vulnerabilities and Existing Solutions: A Review of the Literature

4. Zeng K., Liu S., Shu Y., Wang D., Li H., Dou Y., Wang G., Yang Y. All Your GPS Are Belong to Us: Towards Stealthy Manipulation of Road Navigation Systems. 2018. https://www.usenix.org/conference/usenixsecurity18/presentation/zeng. Accessed June 19, 2021.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3