Properties of Crumb Rubber Concrete

Author:

Kaloush Kamil E.1,Way George B.1,Zhu Han2

Affiliation:

1. Department of Civil and Environmental Engineering, Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306.

2. Civil Engineering Department, Tian-Jin University, Tian-Jin, China 300072.

Abstract

Crumb rubber is a material produced by shredding and commutating used tires. There is no doubt that the increasing piles of used tires create environmental concerns. The long-term goal of this research is to find means to dispose of the crumb rubber by placement of the rubber in portland cement concrete and still provide a final product with good engineering properties. The Arizona Department of Transportation and Arizona State University have initiated several crumb rubber concrete (CRC) test sections throughout Arizona over the past few years. Laboratory tests were conducted to support the knowledge learned in the field and enhance the understanding of the material properties of CRC. Concrete laboratory tests included compressive, flexural, indirect tensile strength, thermal coefficient of expansion, and microscopic matrix analyses. The unit weight and the compressive and flexural strengths decreased as the rubber content in the mix increased. Further investigative efforts determined that the entrapped air, which caused excessive reductions in compressive strength, could be reduced substantially by adding a deairing agent. The higher tensile strains at failure observed from the tests were indicative of more ductile, energy-absorbent mix behavior. The coefficient of thermal expansion test results indicated that CRC was more resistant to thermal changes. The CRC specimens tested remained intact after failure and did not shatter as a conventional mix did. Such behavior may be beneficial for a structure that requires good impact resistance properties. If no special considerations are made to maintain higher strength values, the use of CRC mixes in places where high-strength concrete is not required is recommended.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3