Establishment of a Quantitative Time Conversion Relationship Between Laboratory Accelerated Weathering Aging and Outdoor Natural Aging of the High-Content Polymer Modified Asphalt Applied in Porous Asphalt Pavement: From Theory to Experiment

Author:

Hu Mingjun1ORCID,Ni Hangtian1,Sun Daquan1ORCID,Xu Lei1

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China

Abstract

The purpose of this study was to determine the quantitative time conversion relationship between indoor accelerated weathering aging (AWA) and outdoor natural aging of the high-content polymer modified asphalt (HCPMA) applied in porous asphalt pavement from both theoretical and experimental aspects. Firstly, the calculated aging acceleration rate of the AWA test was determined based on orthogonal analysis and chemical reaction kinetics. The indoor AWA test (0–12 days) and outdoor natural aging (0–12 months) were then performed on HCPMA, and the dynamic shear rheology test and multiple stress creep recovery test were conducted to investigate the rheological properties of HCPMA. Furthermore, the measured aging acceleration rate of the AWA test was determined according to rheological index comparison and then compared with the calculated aging acceleration rate to obtain the ultimate time conversion relationship between indoor and outdoor aging. Results show that it is practical to simulate the natural aging by using the AWA test. HCPMA exhibits similar changes in macroscopic rheological properties in indoor AWA and outdoor natural aging. According to the comparison of rheological indexes, the measured aging acceleration rate of HCPMA under the harshest aging condition is 57.5–120, which is basically consistent with the calculated aging acceleration rate (66) by the chemical reaction kinetics. This further demonstrates the feasibility of this study for determining the indoor-outdoor aging time conversion relationship from theoretical and experimental aspects.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3