Real-Time Highly Resolved Spatial-Temporal Vehicle Energy Consumption Estimation Using Machine Learning and Probe Data

Author:

Severino Joseph1ORCID,Hou Yi1ORCID,Nag Ambarish1ORCID,Holden Jacob1ORCID,Zhu Lei2ORCID,Ugirurmurera Juliette1ORCID,Young Stanley1ORCID,Jones Wesley1,Sanyal Jibonananda3

Affiliation:

1. National Renewable Energy Laboratory, Golden, CO

2. University of North Carolina-Charlotte, Charlotte, NC

3. Oak Ridge National Laboratory, Oak Ridge, TN

Abstract

Real-time highly resolved spatial-temporal vehicle energy consumption is a key missing dimension in transportation data. Most roadway link-level vehicle energy consumption data are estimated using average annual daily traffic measures derived from the Highway Performance Monitoring System; however, this method does not reflect day-to-day energy consumption fluctuations. As transportation planners and operators are becoming more environmentally attentive, they need accurate real-time link-level vehicle energy consumption data to assess energy and emissions; to incentivize energy-efficient routing; and to estimate energy impact caused by congestion, major events, and severe weather. This paper presents a computational workflow to automate the estimation of time-resolved vehicle energy consumption for each link in a road network of interest using vehicle probe speed and count data in conjunction with machine learning methods in real time. The real-time pipeline can deliver energy estimates within a couple seconds on query to its interface. The proposed method was evaluated on the transportation network of the metropolitan area of Chattanooga, Tennessee. The volume estimation results were validated with ground truth traffic volume data collected in the field. To demonstrate the effectiveness of the proposed method, the energy consumption pipeline was applied to real-world data to quantify road transportation-related energy reduction because of mitigation policies to slow the spread of COVID-19 and to measure energy loss resulting from congestion.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3