Estimation of Traffic Dynamics Models with Machine-Learning Methods

Author:

Antoniou Constantinos1,Koutsopoulos Haris N.2

Affiliation:

1. Massachusetts Institute of Technology, Room 1-249, 77 Massachusetts Avenue, Cambridge, MA 02139.

2. Northeastern University, 437 Snell Engineering Center, Boston, MA 02115-5000.

Abstract

Speed–density relationships are a classic way of modeling stationary traffic relationships. Besides offering valuable insight into traffic stream flows, such relationships are widely used in dynamic traffic assignment (DTA) systems. In this research, an alternative paradigm for traffic dynamics models, appropriate for traffic simulation models and based on machine-learning approaches such as k-means clustering, k-nearest-neighborhood classification, and locally weighted regression is proposed. Although these models may not provide as much insight into traffic flow theory as speed–density relationships do, they allow for easy incorporation of additional information to speed estimation and hence may be more appropriate for use in DTA models, especially simulation-based models. This paper (with data from a network in Irvine, California) demonstrates that such machine-learning methods can considerably improve the accuracy of speed estimation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3