Application of Machine Learning Techniques to Predict the Occurrence of Distraction-affected Crashes with Phone-Use Data

Author:

Ma Chaolun1ORCID,Peng Yongxin1ORCID,Wu Lingtao2ORCID,Guo Xiaoyu1ORCID,Wang Xiubin1,Kong Xiaoqiang1ORCID

Affiliation:

1. Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX

2. Center for Transportation Safety, Texas A&M Transportation Institute, College Station, TX

Abstract

Distraction occurs when a driver’s attention is diverted from driving to a secondary task. The number of distraction-affected crashes has been increasing in recent years. Accurately predicting distraction-affected crashes is critical for roadway agencies to reduce distracted driving behaviors and distraction-affected crashes. Recently, more and more emerging phone-use data and machine learning techniques are available to safety researchers, and can potentially improve the prediction of distraction-affected crashes. Therefore, this study first examines if phone-use events provide essential information for distraction-affected crashes. The authors apply the machine learning technique (i.e., XGBoost) under two scenarios, with and without phone-use events, and compare their performances with two conventional statistical models: logistic regression model and mixed-effects logistic regression model. The comparison demonstrates the superiority of XGBoost over logistic regression with a high-dimensional unbalanced dataset. Further, this study implements SHAP (SHapley Additive exPlanation) to interpret the results and analyze the importance of individual features related to distraction-affected crashes and tests its ability to improve prediction accuracy. The trained XGBoost model achieves a sensitivity of 91.59%, a specificity of 85.92%, and 88.72% accuracy. The XGBoost and SHAP results suggest that: (1) phone-use information is an important factor associated with the occurrences of distraction-affected crashes; (2) distraction-affected crashes are more likely to occur on roadway segments with higher exposure (i.e., length and traffic volume), unevenness of traffic flow condition, or with medium truck volume.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference25 articles.

1. Highway Safety Manual 2011. American Association of State Highway and Transportation Officials, Washington, D.C., 2011.

2. A crash-prediction model for multilane roads

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3