Low-Temperature Vacuum Drying Procedure for Rapid Asphalt Emulsion Residue Recovery

Author:

Malladi Haritha1,Asnake Meron1,LaCroix Andrew2,Castorena Cassie1

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC

2. InstroTek, Inc., Raleigh, NC

Abstract

Asphalt emulsions are used extensively in tack coats and preservation surface treatments. The current specifications for asphalt emulsion residue recovery in AASHTO PP 72 are based on low-temperature evaporative drying. The shortest residue recovery procedure included in AASHTO PP 72 requires 6 h of conditioning in an oven to dry an emulsion. The ability to recover emulsion residues efficiently is of great interest given the ongoing efforts to develop emulsion performance-graded specifications based on residual binder properties. In this study, a rapid, vacuum drying technology was evaluated for asphalt emulsion residue recovery. The procedure enables the recovery of sufficient residual binder for dynamic shear rheometer (DSR) testing within 20–40 min. Five emulsions of different classifications were evaluated using both the vacuum drying procedure and the AASHTO PP 72 procedures. The vacuum drying procedure leads to similar water loss to the AASHTO PP 72 procedures. Based on the temperature-frequency sweep and multiple stress creep and recovery (MSCR) test results, the vacuum-dried residues are softer and more viscous than residues recovered using the AASHTO PP 72 procedures. Fourier transform infrared spectroscopy (FTIR) was performed to identify if oxidation levels could explain the observed in rheological trends. However, the results suggest no clear trend in the oxidation levels of residues recovered using AASHTO PP 72 compared with the rapid vacuum procedure. Future work is necessary to infer which method best reflects residual binders placed in the field.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3