Polymer-Modified Asphalt Pavements in Ontario: Performance and Cost-Effectiveness

Author:

Ponniah Joseph1,Kennepohl Gerhard1

Affiliation:

1. Research and Development Branch, Ministry of Transportation, Central Building, Room 330, Downsview, M3M IJ8, Ontario, Canada.

Abstract

Two trial sections were constructed to investigate the rutting resistance and low temperature performance of different polymer-modified asphalt (PMA) mixes at sites representative of highways experiencing rutting as a result of heavy traffic loading in cold climatic regions. The two-way average annual daily traffic for both sites was >35,000 (6,000 vehicles per day). Modified asphalts used in the trial sections include engineered bitumen type 306, premium asphalt, reprocessed polyethylene (Novophalt), Neoprene, scrap tire rubber, Vestoplast-S, Kraton 4460, Styrelf, and polyethylene. Representative test samples of aggregates, asphalt cement, modified asphalts, and hot mixes were taken for routine testing during production. In situ quality control tests were done by taking plate samples while laying the mix and by coring after compaction. Additional laboratory tests were done at temperatures ranging from 0°C to —35°C to evaluate the materials’ low temperature cracking resistance. Field performance of trial sections was monitored yearly by crack mapping and measuring transverse profiles at 30-m spacing on each test section. Levels were taken at 100-mm intervals by using a dipstick. A computer program was written to process the data and calculate the rut depths for each wheelpath. Crack mapping was done to assess the crack growth in each test section. The performance of the sections was compared with respect to average rut depth and crack growth. The following are described: (a) the modified mix design chosen specifically to produce accelerated test results, (b) the experience gained in the construction of trial sections, (c) the results of laboratory testing to evaluate the low temperature performance of the PMAs, (d) the field performance evaluation with respect to rutting and cracking, and (e) the life cycle cost analysis. Average rut depth measurements 5 to 7 years after construction show that PMA pavement sections are performing better than conventional asphalt with respect to rutting. With regard to cracking, polymers with 85 to 100 penetration (pen) base asphalt did not perform better than control sections. However, there is an indication that PMA, which has a soft grade (150 to 200 pen) base asphalt, tends to improve low-temperature performance comparable to the control section. In other words, PMA generally performs better than conventional asphalt, provided it contains a soft grade (150 to 200 pen) base asphalt. Life cycle cost analysis indicates that PMA is cost-effective in extending pavement life by 2 to 3 years if the cost of polymer modification does not exceed the cost of conventional asphalt by 100 percent.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference4 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3