Extensive Model and Matheuristic Algorithm for the Train Platforming Problem with Two-Train-Capacity Tracks: A Case Study of Prague Central Station

Author:

Akyol Özer Emine1ORCID,Bulicek Josef2ORCID,Saraç Tugba3ORCID

Affiliation:

1. Industrial Engineering Department, Eskisehir Technical University, Turkey

2. Department of Transport Technology and Control, University of Pardubice, Czechia

3. Industrial Engineering Department, Eskisehir Osmangazi University, Turkey

Abstract

This paper provides a deeper insight into the train platforming problem (TPP). Many studies have focused on different versions of train scheduling and routing problems, and most of them assume that the platform track’s capacity is one train. However, especially in busy and complex railway stations, most platform tracks are divided into two parts, allowing two trains to simultaneously share the same platform track for passenger boarding/alighting. This results in more efficient train assignment to the platform tracks. In addition, consideration of the track capacity makes the problem more difficult because directions of trains are problematic. Motivated by this challenge, we consider the TPP with two-train-capacity tracks. We first describe the problem in detail and then propose a mixed-integer programming model. The objective of the considered problem is to minimize the total weighted train delays, which are defined as the difference between the departure times calculated by the mathematical model (M1) and the scheduled departure times of the trains in the timetable. Because of the NP-hard nature of the problem, the proposed M1 may not find feasible solutions for large-size problems. Thus, a matheuristic algorithm (MA) is developed to solve large-size problems. We used randomly generated test problems to demonstrate the performance of the proposed M1 and MA. Experimental results showed that MA outperforms M1 in both solution quality and solution time. Additionally, a case study was conducted at the central station of Prague, Czechia.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3