Energy-Efficient Speed Planning for Autonomous Driving in Dynamic Traffic Scenarios

Author:

Shang Yuze1ORCID,Liu Fei12,Qin Ping1,Guo Zhizhong1,Li Zhe1

Affiliation:

1. School of Mechanical and Automobile Engineering, Shanghai University of Engineering Science, Shanghai, China

2. School of Automotive Studies, Tongji University, Shanghai, China

Abstract

In the field of autonomous driving, velocity planning is of paramount importance for handling dynamic obstacle scenarios. To avoid unnecessary acceleration and deceleration, self-driving vehicles need to find an energy-optimized velocity trajectory. Moreover, in complex traffic environments, the vehicle trajectory must consider the spatio-temporal coupling problem to avoid unrealistic driving paths. To address these challenges, this paper proposes a hierarchical planner that first plans the path and then performs speed planning based on the already planned path. Specifically, we focus on the energy consumption factor and use dynamic programming for speed planning while combining safety and comfort considerations. The optimal energy-saving trajectory is obtained by combining the speed profile with the optimal path. To cope with complex scenarios on real roads, we propose an adaptive trajectory adjustment strategy based on model predictive control to track by adaptively selecting tracking modes. Finally, hardware-in-the-loop experimental validation demonstrates that our proposed method significantly reduces energy consumption compared with the traditional decoupling method while ensuring that the autonomous vehicle adapts well to complex traffic scenarios.

Funder

Natural Science Foundation of Hebei Province of China

High-Level Talent Project of Hebei Province of China: Integrated Research and Simulation Realization of Vehicle Ride Comfort and Handling Stability

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3