Assessing the Effects of Limited Curbside Pickup Capacity in Meal Delivery Operations for Increased Safety during a Pandemic

Author:

Fotouhi Hossein1,Mori Nicholas1,Miller-Hooks Elise1,Sokolov Vadim2,Sahasrabudhe Sagar3

Affiliation:

1. Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA

2. Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA

3. Grubhub, Decision Engineering Department, Chicago, IL

Abstract

Meal delivery has become increasingly popular in past years and of great importance in past months during the COVID-19 pandemic. Sustaining such services depends on maintaining provider profitability and reduced cost to consumers while continuing to support autonomy and independence for customers, restaurants, and delivery drivers (here crowdsourced drivers). This paper investigates the possible enactment of curbside regulations in the U.S. that limit the number of drivers simultaneously waiting at restaurants to pick up meals for delivery on both public safety and delivery efficiency. Curbside regulations would aim to increase safety by enabling social distancing between delivery personnel at pickup locations and have a secondary benefit of improving local traffic flows, which are sometimes impeded in busier, urban locations. Curbside space limits are studied in relation to their impacts on consumer-related performance measures: freshness of the food on delivery and click-to-door time. This investigation is enabled through a proposed hybrid discrete-event and time-advanced simulation platform that replicates meal delivery service calls and pickup and delivery operations across a region built on data from a leading meal delivery company. Embedded within the simulation is an integer program that optimally assigns orders to drivers in a dynamically changing environment. Order assignments are constrained by imposed curbside capacity limits at the restaurants, and potential efficiencies and curbside violation reductions from bundling orders are assessed. Results of analyses from numerical experiments provide insights to state and local communities in designing curbside restrictions that reduce curbside crowding yet enable delivery companies to retain their profitability.

Funder

national science foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3