Uncertainty, Efficiency, and Stability of Mixed Traffic Flow: Stochastic Model-Based Analyses

Author:

Lu Liang123ORCID,Zheng Fangfang123ORCID,Liu Xiaobo1ORCID

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Western Hi-tech Zone Chengdu, Sichuan, P.R. China

2. National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Western Hi-tech Zone Chengdu, Sichuan, P.R. China

3. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Western Hi-tech Zone Chengdu, Sichuan, P.R. China

Abstract

This paper proposes a stochastic model for mixed traffic consisting of human-driven vehicles (HVs), connected automated vehicles (CAVs), and degraded connected automated vehicles (DCAVs). The model addresses the issue that most of the current literature ignores: the degradation of CAVs, and the heterogeneity and uncertainty of HVs, CAVs, and DCAVs. The source of uncertainty was the heterogeneous behavior of HVs, CAVs, and DCAVs, captured using vehicle-specific car-following relations, that is, parametric uncertainty. The proposed model allowed for the explicit investigation of the uncertainty, efficiency, and stability of mixed traffic under various CAV penetration rates, different positions of CAVs in the traffic stream, and the different degradation levels of CAVs. The numerical experiment results showed that a larger CAV penetration rate helped to reduce uncertainty and improve the efficiency and stability of traffic flow. Furthermore, we investigated the impact of different position combinations of CAVs in the mixed traffic stream on traffic performance under four scenarios: 1) CAVs randomly distributed in the traffic stream, 2) CAVs forming a platoon traveling in the front of the traffic stream, 3) CAVs forming a platoon traveling in the middle of the traffic stream, and 4) CAVs forming a platoon traveling in the rear of the traffic stream. The results demonstrated that Scenario 2 gave the best performance in reducing uncertainty and improving efficiency and stability under different CAV penetration rates, whereas Scenario 4 performed the worst. Moreover, increasing degradation levels of CAVs negatively affected the reduction of uncertainty and improvement of efficiency and stability.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3