High-Speed Defect Detection in Rails by Noncontact Guided Ultrasonic Testing

Author:

di Scalea Francesco Lanza1,Bartoli Ivan1,Rizzo Piervincenzo1,Fateh Mahmood2

Affiliation:

1. NDE and Structural Health Monitoring Laboratory, University of California–San Diego, 9500 Gilman Drive, M.C. 0085, La Jolla, CA 92093–0085.

2. Track Research Division, Federal Railroad Administration, 1120 Vermont Avenue, NW, Mail Stop 20, Washington, DC 20590.

Abstract

Recent train accidents have reaffirmed the need to develop rail defect detection systems that are more effective than those used today. This paper proposes new inspection systems for detecting transverse-type cracks in the rail head, notoriously the most dangerous flaws in rails. In principle these systems can be applied to both continuous welded rail and jointed tracks because bidirectional inspection can be implemented. However, the systems may fail to detect defects located close to a joint. The proposed technology uses ultrasonic guided waves that are detected by remote sensors positioned as far away as 76 mm (3 in.) from the top of the rail head. An impulse hammer is used to generate waves below 50 kHz that can successfully detect cracks larger than 15% of the head cross-sectional area. For smaller cracks-those as shallow as 1 mm-a pulsed laser is used for generating waves above 100 kHz. The inspection ranges are at least 10 m (32 ft) for cracks larger than 15% of the head area and at least 500 mm (20 in.) for surface head cracks as shallow as 1 mm. The defect detection reliability is improved by using both reflection and transmission measurements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3