Accelerating Bus Electrification: A Mixed Methods Analysis of Barriers and Drivers to Scaling Transit Fleet Electrification

Author:

Blynn Kelly1,Attanucci John2

Affiliation:

1. Cadmus Group, Boston, MA

2. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Although transit buses have a relatively small impact on greenhouse gas emissions, they have a larger impact on urban air quality, have commercially available electric models, and have historically commercialized clean technologies that enabled deployment in other heavy-duty vehicles. This paper investigates what factors affect transit agencies’ decisions to go beyond electric bus pilots to larger scale deployments, with the goal of identifying strategies to enable an accelerated transition to an electrified fleet. This mixed methods analysis utilized quantitative total cost of ownership analysis and qualitative interviews to study the barriers and drivers of electric bus investment for transit fleets in three case study states: California, Kentucky, and Massachusetts. A total cost of ownership analysis estimated electric buses are already more cost-effective than diesel buses in many agency contexts, but are sensitive to key parameters such as annual mileage, fossil fuel costs, and electricity tariffs and supporting policies that vary widely. Though multiple agencies in California reported planning to fully electrify their fleets, outside California where less supportive policies exist, fewer agencies reported planning to procure additional electric buses, primarily owing to high first cost and undesirable tradeoffs with maintaining transit service levels. Interview respondents also reported other substantial barriers such as oversubscribed grant programs, charging infrastructure costs, electricity costs, and additional operational complexity, suggesting a need for multiple complementary policies to overcome these barriers and ensure agencies can transition to a new technology without affecting transit service.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3