Quantification of Effective Flow Resistivity for Parametric Assessment of Pervious Concrete by Using Ultrasonic Pulse Velocity Method

Author:

Singh Avishreshth1ORCID,Biligiri Krishna Prapoorna2ORCID,Sampath Prasanna Venkatesh2

Affiliation:

1. Section of Pavement Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

2. Department of Civil & Environmental Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh, India

Abstract

The use of nondestructive ultrasonic pulse velocity (UPV) testing to assess the hardened properties of pervious concrete (PC) mixtures is an emerging research area. Further, UPV has been successfully used to determine the effective flow resistivity (EFR) of asphalt concrete and cement concrete pavements. However, no research studies have focused on understanding PC characteristics using EFR. Thus, the major objectives of this study were to assess the suitability of UPV testing for characterizing PC mixtures and to quantify their EFR, which is a measure of the material’s characteristic impedance and is dependent on the mix variables along with porosity. Thirty-six control and sand-modified PC mixtures were prepared with four aggregate gradations, and three levels each of water-to-cement (w/c) and aggregate-to-cement (a/c) ratios. Test results indicated that EFR was significantly dependent on the mix variables, with aggregate gradation being the most influential factor (six and eight times higher than w/c and a/c ratios, respectively). Lower EFR or higher sound absorption capacity was reported for PC with higher porosities. The sand-modified PC mixtures had higher EFR (by 4%–12%) than the control PC, and consequently lower sound absorption capacity, attributed to the presence of mortar that densified the mixes. Further, good-to-excellent correlations were obtained for various PC properties with UPV and EFR, which underscored the potential of UPV in characterizing PC. The major contribution of this research was the development of a simple, fast, and cost-effective approach, which can be suitably adopted as a quality-control test to determine PC mixture properties.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3