Asphalt Concrete Mix Design Optimization Using Autoencoder Deep Neural Networks

Author:

Rivera-Pérez José1ORCID,Al-Qadi Imad L.2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

2. Illinois Center for Transportation, University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

Asphalt concrete (AC) balanced mix design (BMD) is based on the selection of aggregate gradation, component volumetrics, and binder content to control pavement cracking and rutting potential. The Illinois Flexibility Index Test (I-FIT) and the Hamburg Wheel Tracking Test (HWTT) results, used to predict cracking and rutting potential, respectively, are used in the BMD approach. However, BMD generally relies on a trial-and-error process to identify the aggregate gradation and binder content needed to meet volumetrics and optimize I-FIT and HWTT results. Minimizing or eliminating the trial-and-error process would increase productivity and accuracy. Therefore, this study proposes an autoencoder deep neural network (ADNN) to develop optimized AC mix design alternatives that can meet a prescribed flexibility index (FI) and rut depth (RD). Autoencoders are a type of neural network designed for representation learning composed of an encoder and a decoder. The encoder detects a structured pattern in the original input data to create a compressed representation of the AC mix design. The decoder reconstructs the compressed representation. The proposed autoencoder is composed of an encoder of five hidden layers, a latent space of one node, and a five-hidden-layer decoder. Models were created from a database of 5,357 data sets that include mix properties, I-FIT FI, and HWTT RD (after data preprocessing was conducted). An autoencoder was then trained to predict the total binder content, and aggregate gradation based on a target mix type, FI, and RD.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3