Large-Scale Network Imputation and Prediction of Traffic Volume Based on Multi-Source Data Collection System

Author:

Kwon Donghyun1ORCID,Lee Changhee2ORCID,Kang Heechan3,Kim Inhi4ORCID

Affiliation:

1. Department of Urban Systems Engineering, Kongju National University, Cheonan, Republic of Korea

2. Daejeon Metropolitan City Department of Public Transportation Policy, Daejeon, Republic of Korea

3. Mobility Research Department, Korea Transportation Safety Authority, Gimcheon-si, Republic of Korea

4. Cho Chun Shik Graduate School of Mobility, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Abstract

Although newly developed traffic detectors were actively deployed to improve the accuracy and coverage of collecting city-wise traffic state information, the rapid transition of the traffic management system caused the problems of massive data corruption. For the practical application of recovering the missing values, the deep learning-based imputation technique is used, which relies on prediction performance with the consideration of dynamic spatial and temporal characteristics in the traffic state information. However, the existing method requires an assumption that the given data comprise a complete dataset from a single source based on the experiments evaluated on a small scale or long stream of freeways. In this paper, we propose a multi-variable spatio-temporal learning technique based on multi-source traffic state information, which was realized by adopting Attention-based Spatial–Temporal Graph Convolutional Networks (ASTGCN). The proposed imputation method cooperatively aggregates spatial and temporal correlation from two different types of detectors into an integrated framework, which allows us to predict missing volume regardless of the missing rate. Moreover, the study was conducted on a large-scale network that contains the entire road characteristics. Daejeon city has served as a case study to demonstrate the performance, and the results show that the mean absolute error of the proposed method is under 12 vehicles/5 min. Our work indicates that multi-source traffic state information can be utilized to impute city-wide missing traffic volume.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3