Total-delay-based Max Pressure: A Max Pressure Algorithm Considering Delay Equity

Author:

Liu Hao1ORCID,Gayah Vikash V.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, 16802 PA

Abstract

This paper proposes a novel decentralized signal control algorithm that seeks to improve traffic delay equity, measured as the variation of delay experienced by individual vehicles. The proposed method extends the recently developed delay-based max pressure (MP) algorithm by using the sum of cumulative delay experienced by all vehicles that joined a given link as the metric for weight calculation. Doing so ensures the movements with lower traffic loads have a higher chance of being served as their delay increases. Three existing MP models are used as baseline models with which to compare the proposed algorithm in microscopic simulations of both a single intersection and a grid network. The results indicate that the proposed algorithm can improve the delay equity for various traffic conditions, especially for highly unbalanced traffic flows. Moreover, this improvement in delay equity does not come with a significant increase to average delay experienced by all vehicles. In fact, the average delay from the proposed algorithm is close to—and sometimes even lower than—the baseline models. Therefore, the proposed algorithm can maintain both objectives at the same time. In addition, the performance of the proposed control strategy was tested in a connected vehicle environment. The results show that the proposed algorithm outperforms the other baseline models in both reducing traffic delay and increasing delay equity when the penetration rate is less or equal to 60%, which would not be exceeded in reality in the near future.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3