Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

Author:

Muduli Kaliprasana1ORCID,Ghosh Indrajit1ORCID

Affiliation:

1. Transportation Engineering Group, Department of Civil Engineering, Indian Institute of Technology (IIT) Roorkee, Uttarakhand, India

Abstract

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference73 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Vehicular Yielding Intention While Approaching a Pedestrian Crosswalk;Transportation Research Record: Journal of the Transportation Research Board;2024-06-19

2. Prediction of pedestrian crossing behaviour at unsignalized intersections using machine learning algorithms: analysis and comparison;Journal on Multimodal User Interfaces;2024-05-28

3. Traffic noise modelling at intersections in mid-sized cities: an artificial neural network approach;Environmental Monitoring and Assessment;2024-03-26

4. Predicting Pedestrian Movement in Unsignalized Crossings: A Contextual Cue-Based Approach;2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3