Assessment of the Rheological and Mechanical Properties of Emulsion–Cement Paste

Author:

Saidi Ahmed1,Purdy Caitlin1ORCID,Ali Ayman1ORCID,Mehta Yusuf12ORCID,Elshaer Mohamed3,Decarlo Christopher4ORCID

Affiliation:

1. Center for Research and Education in Advanced Transportation Engineering Systems (CREATES), Rowan University, NJ

2. Department of Civil and Environmental Engineering, Rowan University, NJ

3. US Army Corps of Engineers, Engineering Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL), Hanover, NH

4. US Aggregates, Indianapolis, IN

Abstract

The main objective of this study was to evaluate the rheological and mechanical properties of emulsion–cement paste (ECP), which is generally formed during the mixing process of cold recycled mixtures. Forty-five combinations of ECP specimens were prepared at varying amounts of emulsion, cement, and water. Specimens were mixed using a low-shear mixer, then allowed to cure in an oven at 60°C for 72 h. The testing program for ECPs included multiple stress creep recovery, bending beam rheometer, linear amplitude sweep, penetration, and isothermal calorimetry tests. Statistical analyses were then conducted to assess the significance of the impact of ECP constituents on the low-, intermediate-, and high-temperature properties. Results showed that varying the proportions of emulsion, cement, and water significantly influenced the properties of ECPs. Higher cement and water contents improved the properties of ECP at high temperatures, but reduced their resistance to intermediate- and low-temperature cracking. Conversely, increasing the emulsion content improved the resistance of ECPs to fatigue and low-temperature cracking, while increasing their rutting susceptibility at high temperatures. The outcomes of this study provide more knowledge about the interactions among emulsion, cement, and water, which can be beneficial to the designers of asphalt mixtures that involve the use of emulsion, cement, and water, such as cold recycled mixtures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3