Short-Term Origin-Destination Demand Prediction Based on Spatiotemporal Encoder-Decoder Network with a Residual Feature Extractor

Author:

Zhong Xiaohui1,Zhang Jinlei1ORCID,Hua Qiang2ORCID,Yang Lixing1ORCID,Gao Ziyou1

Affiliation:

1. School of Systems Science, Beijing Jiaotong University, Beijing, China

2. Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, PR China

Abstract

Online ride-hailing services play a crucial role in daily transportation, However, challenges persist in certain regions with limited access, and drivers encounter difficulties in receiving orders. Accurate prediction of short-term origin-destination (OD) demand is crucial for addressing these issues. This study leverages recent advancements in artificial intelligence and big data to introduce a spatiotemporal encoder-decoder network with a residual feature extractor (RF-STED) for short-term OD demand prediction in online ride-hailing services. The RF-STED model, built on deep learning models such as graph convolutional networks and convolutional long short-term memory (Conv-LSTM), includes spatiotemporal networks, encoding layers, and a residual feature extractor. The spatiotemporal network has two branches: branch one processes multi-pattern OD data using a multi-pattern temporal feature extraction module, utilizing a multi-channel Conv-LSTM to capture temporal correlations. Branch two utilizes a multi-spatial feature extraction module to convert OD pair associations into a spatial topology, extracting multi-spatial correlations. The encoding layer captures spatiotemporal dependencies, while the residual feature extractor decodes compressed vectors back into an OD graph for forecasting future demand. Experiments with a Manhattan taxi dataset in the U.S. show the RF-STED model outperforms 10 baseline models and four ablation models. The results emphasize the model’s strength and robustness in short-term OD flow prediction.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3