Safety Impacts of Transit Signal Priority Using a Full Bayesian Approach

Author:

Ali MD Sultan1ORCID,Kitali Angela E.1ORCID,Kodi John H.1ORCID,Alluri Priyanka1,Sando Thobias2

Affiliation:

1. Department of Civil & Environmental Engineering, Florida International University, Miami, FL

2. School of Engineering, University of North Florida, Jacksonville, FL

Abstract

Transit signal priority (TSP) is a strategy that prioritizes the movement of transit vehicles through a signalized intersection to provide better transit travel time reliability and minimize transit delay. Although TSP is primarily intended to improve the operational performance of transit vehicles, it may also have substantial safety benefits. This study explored the potential safety benefits of the TSP strategy deployed at various locations in Florida. An observational before–after full Bayes (FB) approach with a comparison group was adopted to estimate the crash modification factors (CMFs) for total crashes, rear-end crashes, sideswipe crashes, and angle crashes. The analysis was based on 12 corridors equipped with the TSP system and their corresponding 29 comparison corridors without the TSP system. The deployment of TSP was found to reduce total crashes by 7.2% (CMF = 0.928), rear-end crashes by 5.2% (CMF = 0.948), and angle crashes by 21.9% (CMF = 0.781), and these results are statistically significant at a 95% Bayesian credible interval (BCI) except for the rear-end crashes. On the other hand, sideswipe crashes increased by 6% (CMF = 1.060) although the increase was not significant at a 95% BCI. Overall, the results indicated that TSP improves safety. The findings of this study may present key considerations for transportation agencies and practitioners when planning future TSP deployments.

Funder

Florida Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference16 articles.

1. Federal Highway Administration. Manual on Uniform Traffic Control Devices. Citeseer, 2009, p. 864.

2. Highway Safety Manual. AASHTO, 2010.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3