Pavement Image Datasets: A New Benchmark Dataset to Classify and Densify Pavement Distresses

Author:

Majidifard Hamed1,Jin Peng1,Adu-Gyamfi Yaw1,Buttlar William G.1

Affiliation:

1. Civil and Environmental Engineering Department, University of Missouri-Columbia, MO

Abstract

Automated pavement distresses detection using road images remains a challenging topic in the computer vision research community. Recent developments in deep learning have led to considerable research activity directed towards improving the efficacy of automated pavement distress identification and rating. Deep learning models require a large ground truth data set, which is often not readily available in the case of pavements. In this study, a labeled dataset approach is introduced as a first step towards a more robust, easy-to-deploy pavement condition assessment system. The technique is termed herein as the pavement image dataset (PID) method. The dataset consists of images captured from two camera views of an identical pavement segment, that is, a wide view and a top-down view. The wide-view images were used to classify the distresses and to train the deep learning frameworks, while the top-down-view images allowed calculation of distress density, which will be used in future studies aimed at automated pavement rating. For the wide view group dataset, 7,237 images were manually annotated and distresses classified into nine categories. Images were extracted using the Google application programming interface (API), selecting street-view images using a python-based code developed for this project. The new dataset was evaluated using two mainstream deep learning frameworks: You Only Look Once (YOLO v2) and Faster Region Convolution Neural Network (Faster R-CNN). Accuracy scores using the F1 index were found to be 0.84 for YOLOv2 and 0.65 for the Faster R-CNN model runs; both quite acceptable considering the convenience of utilizing Google Maps images.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3