Integrated Framework for Risk and Impact Assessment of Sediment Hazard on a Road Network

Author:

Rose Santos Johan1ORCID,Varghese Varun1,Chikaraishi Makoto1ORCID,Uchida Tatsuhiko1

Affiliation:

1. Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

Abstract

Road networks are highly vulnerable to risks stemming from both internal factors, such as the topological structure of the network, and external factors, such as natural disasters. The disruptions caused by these potential risk factors could result in severe physical and socio-economic losses. Therefore, understanding the impact and risk associated with road networks will be beneficial in reducing losses and helping to prepare better risk mitigation and management strategies. This study proposes an integrated approach to assess risk of sediment hazard on the road network by borrowing concepts from (a) transport vulnerability studies, (b) disaster risk assessment, and (c) spatial risk analysis and applying it to an identified vulnerable road network in Kure, Japan. The proposed risk framework holistically incorporates the processes of topological network vulnerability analysis, exposure spatial analysis, hazard occurrence probability estimation through binary logit regression, impact calculation using Monte Carlo simulation, and risk estimation. Using the recorded information on the rainfall event and sediment disaster that occurred in Hiroshima prefecture in July 2018, 12,000 possible multi-link disruption scenarios were simulated. Spatial distribution of the risk calculations helped to identify links with high probability of disruption and high impact, that is, high-risk links. The findings of this study may support policy decisions on road risk mitigation and recovery prioritization during disaster and road infrastructure investment through risk-benefit analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3