Quantification of Sources of Variability of Air Pollutant Exposure Concentrations among Selected Transportation Microenvironments

Author:

Christopher Frey H.1,Gadre Disha2,Singh Sanjam3,Kumar Prashant4

Affiliation:

1. Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC

2. Trinity Consultants, Phoenix, AZ

3. Tora Consulting, LLC, Lexington, SC

4. Global Centre for Clean Air Research, Department of Civil and Environmental Engineering and Physical Sciences, University of Surrey, Guildford, UK

Abstract

The National Research Council has identified the lack of sufficient microenvironmental air pollution exposure data as a significant barrier to quantification of human exposure to air pollution. Transportation microenvironments, including pedestrian, transit bus, car, and bicycle, can be associated with higher exposure concentrations than many other microenvironments. Data are lacking that provide a systematic basis for comparing exposure concentrations in these transportation modes that account for key sources of variability, such as time of day, season, and types of location along a route such as bus stops and intersections. The objectives of this work are: to quantify and compare particulate matter (PM2.5), CO, and O3 exposure concentrations in selected active and passive transportation microenvironments; and to quantify the effect of season, time of day, and location with respect to variability in transportation mode exposure concentrations. Measurements were made with an instrumented backpack and were repeated for multiple days in each season to account for the effect of inter-run variability. Results include mean trends, spatial variability, and contribution to variance. Pedestrian and cycle mode exposure concentrations were approximately similar to each other and were substantially higher than for bus and car cabins for both PM2.5 and O3. Based on over 30 days of field measurements conducted over three seasons and for two times of day on weekdays, transportation mode and season were the largest contributors to variability in exposure for PM2.5 and O3, whereas location type alone and in combination with transport mode helped explain variability in CO exposures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3