Affiliation:
1. Texas State University, San Marcos, TX
2. Texas A&M Transportation Institute, San Antonio, TX
Abstract
Gaining an understanding of speed–crash relationships is a critical issue in highway safety research. Because of the ongoing pandemic (COVID-19) there has been a reduction in traffic volume, and some early studies explain that speeding in an environment with less traffic is associated with a high number of crashes, especially fatal and serious injury crashes. This study aims to quantify the impact of operating speed on traffic crash occurrences. The study conflated several databases (speed data, roadway inventory data, and crash data) that contain data from Dallas, Texas, spanning from 2018 to 2020, to examine the speed–crash association. Using the negative binomial Lindley regression model, this study showed that the trends of crash prediction models vary over the years (2018, 2019, and 2020) by different injury severity levels (i.e., fatal crashes, fatal and incapacitating injury crashes). The 2020 models show that operating speed measures (i.e., average operating speed) have a significant impact on crash frequencies. The magnitudes of the speed measures show variations across the models at different injury severity levels.
Subject
Mechanical Engineering,Civil and Structural Engineering
Reference40 articles.
1. Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis
2. COVID-19 - Mobility Trends Reports. Apple. https://www.apple.com/covid19/mobility. Accessed October 25, 2020.
3. USDOT. Weekly Traffic Volume Report: Special Issue (9/21/2020-9/27/2020). www.fhwa.dot.gov/policyinformation/weeklyreports/travel/interstate_travel_week_39.pdf.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Probing into Driver Speeding Patterns and Their Influence on Child Occupancy in Urban Areas;Transportation Research Record: Journal of the Transportation Research Board;2023-08-02