Network-Wide Vehicle Trajectory Prediction in Urban Traffic Networks using Deep Learning

Author:

Choi Seongjin1,Yeo Hwasoo1,Kim Jiwon2

Affiliation:

1. Korea Advanced Institute of Science and Technology, Daejeon, South Korea

2. The University of Queensland, Brisbane, Australia

Abstract

This paper proposes a deep learning approach to learning and predicting network-wide vehicle movement patterns in urban networks. Inspired by recent success in predicting sequence data using recurrent neural networks (RNN), specifically in language modeling that predicts the next words in a sentence given previous words, this research aims to apply RNN to predict the next locations in a vehicle’s trajectory, given previous locations, by viewing a vehicle trajectory as a sentence and a set of locations in a network as vocabulary in human language. To extract a finite set of “locations,” this study partitions the network into “cells,” which represent subregions, and expresses each vehicle trajectory as a sequence of cells. Using large amounts of Bluetooth vehicle trajectory data collected in Brisbane, Australia, this study trains an RNN model to predict cell sequences. It tests the model’s performance by computing the probability of correctly predicting the next [Formula: see text] consecutive cells. Compared with a base-case model that relies on a simple transition matrix, the proposed RNN model shows substantially better prediction results. Network-level aggregate measures such as total cell visit count and intercell flow are also tested, and the RNN model is observed to be capable of replicating real-world traffic patterns.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3