Optimizing Right-Turn Signals to Benefit Pedestrian–Vehicle Interactions

Author:

Wang Jiawen1,Yang Chengcheng1,Dong Jieshuang1,Zhou Xizhao1

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Shanghai, China

Abstract

In most right-driving urban signalized intersections, right-turn vehicle signals do not usually control turns. To address the problem of signal control in a pedestrian–vehicle interaction, this paper establishes a right-turn signal optimization (RTSO) model that considers both efficiency and safety. First, the main factors influencing the behavior of vehicle and pedestrian during pedestrian–vehicle interaction are analyzed, and a pedestrian–vehicle interaction model (PVI model) at an urban road crosswalk is established. This model is used to determine the probabilities of four pedestrian–vehicle interaction situations. Then, based on the traffic conflict theory, the next step was to construct an objective function that minimizes the total delay of traffic participants considering pedestrian–vehicle interactions, and another objective function that minimizes the potential conflicts considering pedestrian–vehicle interactions. Then, an RTSO model is obtained by introducing a safety-efficiency coefficient to combine the previously described two constructed functions. Finally, the PVI model and delay model are verified through video observation data and the establishment of a cellular automata simulation platform of pedestrian–vehicle interaction. Using these models, a field signal plan, the delay minimization scheme, the conflict minimization scheme, and the proposed scheme are numerically analyzed under different yielding rates. This proposed scheme is further numerically analyzed under different safety-efficiency coefficients. The results show that this paper’s RTSO model has certain advantages in increasing safety and reducing delay. In addition, using these results, this paper gives a recommended value for the safety-efficiency coefficients in different application scenarios.

Funder

Shanghai Sailing Program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3