Bridging the Gap Between Mesoscopic Transport Planning and Microscopic Traffic Simulation: An Analytical and Numerical Analysis of Traffic Dynamics

Author:

Triebke Henriette12ORCID,Kromer Markus1ORCID,Vortisch Peter2ORCID

Affiliation:

1. Corporate Research, Robert Bosch GmbH, Renningen, Germany

2. Institute for Transport Studies, KIT, Karlsruhe, Germany

Abstract

Usage profiles of shared autonomous fleets will considerably differ from present-day privately owned vehicles. Thus, requirements on powertrain and other vehicle components are expected to change significantly. While there are still no real-world data available, automotive requirement engineering strongly depends on synthetic driving profiles, for example, forwarded by traffic simulation. These simulations, however, are quite challenging as they need to combine multi-modal, large-scale fleet simulations with microscopic traffic modeling to simultaneously produce realistic usage profiles and detailed driving cycles. We aim to combine the two open-source tools MATSim and SUMO to achieve this goal. As an important step in this endeavor, we analyze the consistency of both MATSim and SUMO with regard to traffic dynamics by means of three experiments with an increasing level of complexity: (i) analytically on a homogeneous road segment in the steady-state; (ii) numerically on a homogeneous road segment in the non-stationary state for a synthetic test case; and (iii) numerically for a highly non-linear medium-sized real-world test case in Berlin. We analyze the simulation results with respect to macroscopic flow–density–speed relations. In addition, we also study network impedances for the Berlin test case. We show that the traffic dynamics of MATSim and SUMO behave differently for the various test cases and discuss the implications on our tool-coupling efforts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current limitations and opportunities for improvements of agent-based transport models for noise exposure assessment;Journal of Environmental Management;2024-09

2. Modeling Exposure to Mobility-Related Pollution: Review and Key Challenges;Transportation Research Record: Journal of the Transportation Research Board;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3