Visual Simultaneous Localization and Mapping with Applications to Monitoring of Underground Transportation Infrastructure

Author:

Daneshgaran Fred1,Marangi Antonio2,Bruno Nicola2,Lizzio Fausto2,Mondin Marina1,Olia Khashayar3

Affiliation:

1. California State University Los Angeles, Los Angeles, CA

2. Politecnico di Torino, Torino, Italy

3. Transpower, LLC, Escondido, CA

Abstract

This paper presents the results of the development, design, and implementation of a visual simultaneous localization and mapping (SLAM) system for autonomous real-time localization with application to underground transportation infrastructure (UTI) such as tunnels. Localization is achieved in the absence of any global positioning system (GPS) or auxiliary system. The indoor localization system is a necessary element of a fully autonomous platform for the detection of cracks and other anomalies on the interior surfaces of tunnels and other UTI. It can be used for tagging of high-resolution sensor data obtained with low-cost prototype data acquisition platforms previously developed. Visual based SLAM has been used as the core element in an architecture employing a commercial off-the-shelf (COTS) ZED stereo camera from Stereolabs. To achieve real-time operation, an NVIDIA Jetson TX2 massively parallel graphics processing unit (GPU) was used as the core computational engine employing two different software libraries. We achieved localization at 5 frames per second (FPS) using ORBSLAM2 open-source software library, and the much lighter, but proprietary, ZED SDK was able to deliver a performance at nearly 60 FPS. To assess the accuracy of the relative localization system, we conducted several tests at 30 FPS and reported on the resulting error variances that were found to be consistently very small. Finally, we conducted several tests in a tunnel in the Los Angeles county area and confirmed the applicability of the method for monitoring UTI.

Funder

u.s. department of transportation

University Transportation Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3