Efficient Fusion Decision System for Predicting Road Crash Events: A Comparative Simulator Study for Imbalance Class Handling

Author:

Elamrani Abou Elassad Zouhair1ORCID,Ameksa Mohammed2,Elamrani Abou Elassad Dauha1,Mousannif Hajar2

Affiliation:

1. Random Signals, Networks and Systems Research Team, Computer Science Department, National School of Applied Sciences of Safi, Cadi Ayyad University, Safi, Morocco

2. Computer Systems Engineering Laboratory, Computer Science Department, Faculty of Sciences Semlalia of Marrakech, Cadi Ayyad University, Marrakech, Morocco

Abstract

Road crash events are a fact of life. Although significant progress have been made in adopting machine learning techniques for analyzing road crashes, there has been limited emphasis on evaluating crash events within data fusion systems. The primary purpose of this study is to outline and validate a comparative safety analysis of an ensemble fusion system founded on the use of different base classifiers and a meta-classifier to procure more efficient crash prediction. Three categories of features namely vehicle-telemetry, driver-inputs and environmental-conditions have been collected using a driving-simulator in order to identify the crash strongest precursors through feature extraction technique. Furthermore, optimized strategies using AdaBoost, XGBoost, RF, GBM, LightGBM, CatBoost and KNN techniques were implemented to establish effective predictions within a fusion-based system. To ensure that the proposed system provide superior decisions given the infrequent nature of crash events, an imbalance-learning approach was conducted based on three resampling strategies: over-sampling, under-sampling and SMOTE-Tomek-Links. The findings depict that the superior performance has been attained when adopting LightGBM, CatBoost and KNN as base classifiers along with SMOTE-TL as balancing technique and XGBoost as meta-classifier with 89.19% precision, 96.77% recall and 92.83% f1-score. To our knowledge, there has been a limited interest, if not at all, at endorsing a fusion-based system examining the impact of real-time features' combinations on the prediction of road crashes while providing a critical analysis of class-imbalance. Overall, the findings emphasized the relevance of the explanatory features and can be endorsed in designing efficient intelligent transportation systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3