Traffic Prediction using Time-Space Diagram: A Convolutional Neural Network Approach

Author:

Khajeh Hosseini Mohammadreza1,Talebpour Alireza1

Affiliation:

1. Texas A&M University, College Station, TX

Abstract

Traffic prediction is a major component of any traffic management system. With the increase in data sources and advancement in connectivity, data analysis and machine learning approaches for traffic prediction have gained a lot of attention. Most of the existing data analysis approaches in traffic prediction rely on aggregated inputs such as flow and density, with limited studies using the individual vehicle-level data. The time-space diagram of the vehicles can be constructed from the connected vehicles’ data. This plot is comprehensive and contains all the information about traffic flow dynamics at both microscopic and macroscopic levels. Accordingly, this study introduces a deep learning-based methodology to directly predict the traffic state based on the time-space diagram with the use of convolutional neural networks (CNN). The time-space diagram is directly used as the input to the traffic prediction model using a CNN. The prediction capability of the proposed model is compared with multilayer perceptron, support vector regression, and autoregressive integrated moving average, and the results indicate a superior capability of CNN in predicting flow and density across all possible values of these parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3