Early Age Monitoring of High Cement Replacement Mixtures for Pavement

Author:

Baral Aniruddha1ORCID,Roesler Jeffery R.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

Decarbonization of concrete will require a combination of alternative binding materials and higher cement replacement rate with supplementary cementitious materials. Developing tools and methods that help engineers evaluate the properties of early age concrete pavement, such as setting time and strength gain, will be necessary to adopt new concrete mixes. Two concrete pavement test sections were constructed, a high early strength concrete mix with 25% (control) and 40% replacement of cement with fly ash (HVFAC), along with monitoring of the concrete’s setting time, saw-cut timing, and strength gain. A non-contact ultrasonic device was used to estimate setting time through measuring leaky Rayleigh wave energy transmission. The laboratory setting time of the control and HVFAC mix measured with the non-contact device was 5.5 h and 15 h, respectively, and agreed with measured isothermal calorimetry results. Further calorimeter tests showed that adding an accelerating admixture or replacing part of the cement with nano-limestone decreased the HVFAC setting time up to 4.4 h. The field setting time of the control mixture with the non-contact device measured 4.2 h, which was shorter than the laboratory estimate. Based only on the experience of construction personnel, saw-cutting for these mixtures was initiated too early and caused significant joint raveling, reinforcing the importance of in situ setting time measurement. The maturity method was successfully implemented with embedded wireless temperature sensors that rapidly and easily estimated the in-place compressive strength and improved opening time determination for concrete with high cement replacement levels, which are sensitive to the volume of supplementary cementitious materials, admixtures, and ambient conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference42 articles.

1. United Nations. Paris Agreement.UNNew York NY, 2015. www.un.org/en/climatechange/paris-agreement

2. Climate Change 2014: Synthesis Report, IPCC Fifth Assessment Report (AR5). IPCC, Geneva, Switzerland, 2014.

3. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry

4. Recent advances in understanding the role of supplementary cementitious materials in concrete

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3