Developing an Automated Technique to Calibrate the AASHTOWare Pavement ME Design Software

Author:

Islam Shuvo1,Bose Avishek2,Jones Christopher A.1,Hossain Mustaque1,Vahl Cristopher I.3

Affiliation:

1. Department of Civil Engineering, Kansas State University, Manhattan, KS

2. Department of Computer Science, Kansas State University, Manhattan, KS

3. Department of Statistics, Kansas State University, Manhattan, KS

Abstract

Many state highway agencies are in the process of implementing the AASHTOWare Pavement ME Design (PMED) software for routine pavement design. However, a recurring implementation challenge has been the need to locally calibrate the software to reflect an agency’s design and construction practices, materials, and climate. This study introduced a framework to automate the calibration processes of the PMED performance models. This automated technique can search PMED output files and identify relevant damages/distresses for a project on a particular date. After obtaining this damage/distress information, the technique conducts model verification with the global calibration factors. Transfer function coefficients are then automatically derived following an optimization technique and numerical measures of goodness-of-fit. An equivalence statistical testing approach is conducted to ensure predicted performance results are in agreement with the measured data. The automated technique allows users to select one of three sampling approaches: split sampling, jackknifing, or bootstrapping. Based on the sampling approach chosen, the automated technique provides the calibration coefficients or suitable ranges for the coefficients and shows the results graphically. Model bias, standard error, sum squared error, and p-value from the paired t-test are also reported to assess efficacy of the calibration process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3