Properties of Engineered Cementitious Composites Using Combined Systems of Fly Ash and Post-Processed Bagasse Ash as Supplementary Cementitious Materials

Author:

Subedi Sujata1ORCID,Hassan Marwa M.1ORCID,Arce Gabriel A.2ORCID,Barbato Michele3ORCID,Noorvand Hassan1ORCID,Mohammad Louay4

Affiliation:

1. Bert S. Turner Department of Construction Management, Louisiana State University, Baton Rouge, LA

2. Virginia Transportation Research Council, Charlottesville, VA

3. Department of Civil and Environmental Engineering, University of California Davis, Davis, CA

4. Louisiana Transportation Research Center, Baton Rouge, LA

Abstract

This study assessed the viability of utilizing post-processed bagasse ash (PBA) along with Class F fly ash (FA) to partially replace cement in engineered cementitious composites (ECCs). Field-collected sugarcane bagasse ash was processed by sieving, burning, and grinding to produce PBA. Cement replacement with supplementary cementitious materials (SCMs) was kept constant at 60% (by mass) in all composites. However, the composition of the SCMs was varied as follows: (1) 100%FA as control; (2) 75%FA/25%PBA; (3) 50%FA/50%PBA; (4) 25%FA/75%PBA; and (5) 100%PBA. Fresh and hardened properties of the composites were evaluated through a flow table, uniaxial tensile tests, surface resistivity, and compressive strength. Furthermore, single-crack tensile tests were conducted to evaluate fiber-bridging properties, and fracture toughness tests were conducted to determine fracture toughness. Results showed that the incorporation of PBA decreased workability. Furthermore, using PBA produced a negligible impact on the compressive strength, yet significant improvements in surface resistivity. Whereas the tensile strain capacity of the composites decreased for PBA contents greater than 25%, the tensile strength was not significantly affected. The decrease in ductility was mainly attributed to the decrease in pseudo-strain-hardening performance indexes. Overall, results suggest that producing ECCs using combined systems of FA and PBA as partial cement replacement is feasible. Yet, achieving high ductility of the composites is challenging when utilizing high content of PBA (i.e., more than 25% of FA replaced with PBA by mass).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3