Improving Interstate Freeway Travel Time Reliability Analysis by Clustering Travel Time Distributions

Author:

Zhang Xiaoxiao1,Zhao Mo2,Appiah Justice2,Fontaine Michael D.2

Affiliation:

1. Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA

2. Virginia Transportation Research Council, Charlottesville, VA

Abstract

Travel time reliability quantifies variability in travel times and has become a critical aspect for evaluating transportation network performance. The empirical travel time cumulative distribution function (CDF) has been used as a tool to preserve inherent information on the variability and distribution of travel times. With advances in data collection technology, probe vehicle data has been frequently used to measure highway system performance. One challenge with using CDFs when handling large amounts of probe vehicle data is deciding how many different CDFs are necessary to fully characterize experienced travel times. This paper explores statistical methods for clustering CDFs of travel times at segment level into an optimal number of homogeneous clusters that retain all relevant distributional information. Two clustering methods were tested, one based on classic hierarchical clustering and the other used model-based functional data clustering, to find out their performance on clustering distributions using travel time data from Interstate 64 in Virginia. Freeway segments and those within interchange areas were clustered separately. To find the proper data format as clustering input, both scaled and original travel times were considered. In addition, a non-data-driven method based on geometric features was included for comparison. The results showed that for freeway segments, clustering using travel times and the Anderson–Darling dissimilarity matrix and Ward’s linkage had the best performance. For interchange segments, model-based clustering provided the best clusters. By clustering segments into homogenous groups, the results of this study could improve the efficiency of further travel time reliability modeling.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3