Impact of Stochasticity on Traffic Flow Dynamics in Macroscopic Continuum Models

Author:

Zheng Shi-Teng1,Jiang Rui1,Jia Bin1,Tian Junfang2,Gao Ziyou1

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing, China

2. Institute of Systems Engineering, College of Management and Economics, Tianjin University, Tianjin, China

Abstract

Stochasticity is an indispensable factor for describing real traffic situations. Recent experimental study has shown that a model spanning a two-dimensional speed–spacing (or speed–density) relationship has the potential to reproduce the characteristics of traffic flow in both experiments and empirical observations. This paper studies the impact of stochasticity on traffic flow in macroscopic models utilizing the stochastic flow–density relationship. Numerical analysis is conducted under the periodic boundary to study the impact of stochasticity on stability. Traffic flow upstream of a bottleneck is also investigated to study the impact of stochasticity on the oscillation growth feature. It is shown that there is only a quantitative difference for model stability after introducing stochasticity. In contrast, a qualitative change of the traffic oscillation growth feature can be clearly observed. With the introduction of stochasticity, traffic oscillations begin to grow in a concave way along the road. Sensitivity analysis is also performed. It is found that, under the stochastic flow–density relationship: (i) with the decrease of relaxation time, the second-order model becomes stable; (ii) the smaller the propagation speed of small disturbance, the much stronger the traffic oscillation; (iii) the larger the fluctuation range, the sooner the traffic oscillation fully develops; and (iv) the changing probability has trivial impact on the simulation results. Finally, model calibration and validation are conducted. It is shown that the experimental spatiotemporal patterns can be captured by macroscopic models under the stochastic flow–density relationship, especially the second-order model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3