A Review of Electrically Conductive Cement Concrete Pavement for Sustainable Snow-Removal and Deicing: Road Safety in Cold Regions

Author:

Anis Mohammad1ORCID,Abdel-Raheem Mohamed1ORCID

Affiliation:

1. Department of Civil Engineering, The University of Texas Rio Grande Valley, Edinburg, TX

Abstract

Within cold U.S. regions, winter storms can cause interruptions in transportation networks, affecting transportation entities’ revenue streams. Conventional snow-removal methods on roadways efficiently remove snow and ice, yet their adverse environmental impacts further make winter maintenance more challenging. In response to these concerns, electrically conductive cement concrete (ECCC) pavement has become an effective alternative for deicing and snow melting on road surfaces. ECCC utilizes the Joule heating principles to effectively melt snow and ice by incorporating conductive elements into conventional concrete. This paper comprehensively reviews the current literature on ECCC pavement. Previous studies have diligently explored various aspects of ECCC pavement, including concrete conductivity enhancement, heat transfer processes, and meticulous performance assessments, ranging from controlled laboratory scale experiments to small-scale field evaluations. The conclusions drawn from these investigations highlight the potential of ECCC pavement to considerably enhance winter road maintenance, consequently improving road safety and minimizing traffic interruptions during winter storms. The present review emphasizes ECCC pavement as a promising paradigm for effectively addressing the complexities associated with winter road maintenance in colder regions. Moreover, its environmentally friendly deicing capabilities present a sustainable departure from conventional methodologies. However, certain limitations currently impede widespread adoption of ECCC pavement, mainly concerning optimizing cost-effective construction techniques, ensuring long-lasting durability, and enhancing energy efficiency. Addressing these limitations could accelerate the broader adoption of ECCC pavement, promoting safer and more sustainable winter transportation practices.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3